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Energies and collapse times of symmetric and symmetry-breaking states of finite systems
with a U„1… symmetry
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~Received 16 April 2001; published 24 October 2001!

We study quantum systems of volumeV, which will exhibit the breaking of a U~1! symmetry in the limit of
V→`, whenV is large but finite. We estimate the energy difference between the ‘‘symmetric ground state’’
~SGS!, which is the lowest-energy state that does not break the symmetry, and a ‘‘pure phase vacuum’’~PPV!,
which approaches a symmetry-breaking vacuum asV→`. Under some natural postulates on the energy of the
SGS, it is shown that PPVs always have a higher energy than the SGS, and we derive a lower bound of the
excess energy. We argue that the lower bound isO(V0), which becomesmuch larger than the excitation
energies of low-lying excited states for a largeV. We also discuss the collapse time of PPVs for interacting
many bosons. It is shown that the wave function collapses in a microscopic time scale, because PPVs are not
energy eigenstates. We show, however, that for PPVs the expectation value of any observable, which is a finite
polynomial of boson operators and their derivatives, does not collapse for a macroscopic time scale. In this
sense, the collapse time of PPVs is macroscopically long.
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The symmetry breaking~SB! is a key to understand quan
tum systems of many degrees of freedom. Although SB
formally defined for infinite systems, the physics of SBs
finite systems have been attracting much attention@1–8# for
the following reasons.

~i! Progress of experimental techniques enables on
observe and examine phase transitions in small systems,
as small magnets, small superconductors@9#, liquid Helium
in a small bubble@10#, and laser-trapped atoms@11#, hence
SBs in finite systems should be studied seriously.

~ii ! Although recent progress of computers enables on
obtain ground states of finite systems numerically, the re
tion between such ground states and SB ground state
infinite systems are nontrivial.

In a mean-field approximation, ground states of a fin
system of volumeV are degenerate~if it will exhibit a SB as
V→`), and each ground state approaches a SB vacuum
the infinite system asV→`. We call such a state that has
finite expectation value of an order parameter and
proaches~i.e., well approximates! a SB vacuum of the infi-
nite system asV→` a ‘‘pure phase vacuum’’~PPV!. On the
other hand, if one diagonalizes the Hamiltonian of the fin
system exactly, the energy spectrum is much different fr
that of a mean-field approximation. The ground states are
necessarily degenerate. Moreover, it often occurs that a s
metric state that does not break the symmetry is a gro
state, whereas PPVs have higher energies@1–7#, in the ab-
sence of a SB field, which is usually considered as an
physical, artificial field for the breaking of a U~1! symmetry.
We call such a ground state the ‘‘symmetric ground sta
~SGS!. In contrast to PPVs, the SGS does not approach a
vacuum of the infinite system asV→`. Hence, for a SB to
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occur, the energy difference between PPVs and the S
should be small enough. Although the magnitude of this
ergy difference has been attracting much attention@1–7#,
definite conclusions have not yet been reached for the br
ing of a U~1! symmetry. For example, an exact calculati
@5# gave only a rough estimate@see the discussion following
Eq. ~15!#.

In this paper, we estimate much more strictly the ene
difference between PPVs and the SGS for the breaking
U~1! symmetry. Under some natural postulates on the ene
of the SGS, we show that PPVs always have a higher ene
than the SGS, and that the excess energy is lower boun
by m8^dN2&/2V, wherem8 is the derivative of the chemica
potential with respect to the densityn[^N&/V, and ^dN2&
denotes the fluctuation of ‘charge’N. We further argue that
this lower bound isO(V0), which becomesmuch largerthan
the excitation energies of low-lying excited states for a la
V. This should be contrasted with the breaking of theZ2
symmetry, for which the energy difference between PP
and the SGS is onlyO(V21) @1#, which becomesmuch
smaller than the excitation energies in a three-dimensio
space for a largeV. We also study the collapse timetcoll of
PPVs for the case of interacting many bosons. It is sho
that tcoll5O(V0) for the wave function, because PPVs a
not energy eigenstates. We show, however, that for PP
tcoll5O(AV) for the expectation value of any observab
which is a finite polynomial of boson operators and th
derivatives, if the degree of the polynomial is fixed indepe
dent ofV. In this sense, the collapse time of PPVs is mac
scopically long.

We consider a quantum system that has a U~1! symmetry,
whose conserved chargeN̂ has integral eigenvalues~in an
appropriate unit!. We assume that the system is uniform
with the periodic boundary conditions, in order to elimina
additional complexities caused by nonuniform potentials
surface effects. Since the system volumeV is finite, N̂ is
always well defined, hence there exist simultaneous eig
statesuN,l & of Ĥ and N̂;
ce
©2001 The American Physical Society21-1
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ĤuN,l &5EN,l uN,l &, ~1!

N̂uN,l &5NuN,l &, ~2!

wherel is a ~set of! quantum number~s!. For each value of
N, there exists the lowest-energy stateuN,G&, which we as-
sume is nondegenerate. In general,N̂ becomes the generato
of the U~1! symmetry. Hence,uN,G& is the SGS. We now
make two basic postulates: postulate 1 is the extensivity
the lowest eigenenergy,

EN,G5Ve~N/V!, ~3!

wheree is a single-variable function of the charge dens
N/V. This postulate seems natural under our assumpt
that the system is uniform anduN,G& is nondegenerate, a
long as the charge does not induce a long-range fo
~Hence, care must be taken when the present results ar
plied to systems for whichN is the electric charge.! By tak-
ing the limit V→`, we can definee(n) for every continuous
value ofn(5N/V). Using thise(n) for a finiteV as well, we
can regardN in Eq. ~3! as a continuous variable. Hence, w
can definem(n)[e8(n)5(]/]N)EN,G . Postulate 2 is

m8~n![e9~n!5V
]2

]N2
EN,G.0, ~4!

which also seems natural because thermodynamics req
that m should be a nondecreasing function ofn, for the sys-
tem to be stable. Althoughm850 for noninteracting particles
~such as a photon gas whosem is always zero!, we assume
m8.0 because we are not interested in such a trivial ca
For weakly interacting many bosons with a repulsive int
action ~with the effective coupling constantg.0), for ex-
ample, these postulates are indeed satisfied,EN,G
5Ve(N/V), where e(n)5gn2/21•••, hencem85g1•••

.0.
When the system exhibits the breaking of the U~1! sym-

metry in the limit ofV→` ~while keeping the charge densit
finite!, a SB state cannot be lim

V→`
uN,G& or lim

V→`
uN,l &,

because they are eigenstates ofN̂ @1–7#. Therefore, one
should take superpositions of states with different charge
order to construct a PPV, which approaches~i.e., well ap-
proximates! a SB vacuum asV→` @1–7#. If the quantum
system~of a finiteV) is perfectly closed, such superpositio
are forbidden for massive and/or charged particles by
charge superselection rule, which requires that any pure s
must be an eigenstate ofN̂ @12#. However, if the quantum
system is a subsystem of a larger system@13#, we previously
showed that one can associate a pure state, which is a c
ent superposition of states with different charges, to the s
system@6,14#. We investigate energy expectation values
such states, which in general have either of the follow
forms;

uC&[(
N

CNuN,G&, ~5!
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uC̃&[(
N,l

C̃N,l uN,l &, ~6!

whereCN andC̃N,l are coefficients, which are normalized a
(NuCNu251 and (N,l uC̃N,l u251, respectively. We are in
terested in the case where the charge densityn(5^N&/V)
approaches a finite value asV→`. ~On the other hand, the
casen→0 is rather trivial, while the casen→` is anoma-
lous.! Namely,

^N&5O~V!, ~7!

where^N&[^CuN̂uC& or ^C̃uN̂uC̃&, andn5^N&/V. Further-
more, PPVs should be consistent with thermodynamics,
cording to which variances of extensive variables are
O(V) or smaller. Hence,

^dN2&<O~V!, ~8!

where ^dN2&[^CudN̂2uC& or ^C̃udN̂2uC̃&, where dN̂[N̂

2^N&. Namely,CN andC̃N,l should localize in theN space
in such a way that Eqs.~7! and~8! are satisfied. Note that th
phases ofCN andC̃N,l are irrelevant tô N&, ^dN2&, and to
the energy expectation values,^CuĤuC&5(NuCNu2EN,G and

^C̃uĤuC̃&5(N,l uCNu2EN,l .
For N5^N&1DN, where (DN)2<O(V), Eq. ~3! can be

expanded as

EN,G5VF eS ^N&
V D1

DN

V
mS ^N&

V D1
1

2 S DN

V D 2

m8S ^N&
V D

1OS 1

V3/2D G . ~9!

We neglect the higher-order term,VO(1/V3/2), in the follow-
ing analysis. Then, we can easily show that

^CuĤuC&5E^N&,G1
^dN2&

2V
m8S ^N&

V D . ~10!

Since the last term is positive because of postulate 2,
conclude thatuC& always has a higher energy thanuN,G& if
they have the same value of^N&. Here, it is crucial to fix the
value of ^N& for the comparison.@Otherwise, either state
could have a higher energy because of the linear term in
~9!.# Note that formula~10!, although very simple, gives th
energy of a general state of the form~5! very precisely, with
the error being onlyO(1/V1/2). Note also that the energ
expectation value is determined only by^N& and ^dN2& if
the functional forms ofEN,G andm8(n) are given.

For a more general state~6!, we derive an inequality. Le
CN8 ’s be some coefficients that satisfyuCN8 u25( l uC̃N,l u2.
For uC8&[(NCN8 uN,G&,

^C̃uĤuC̃&2^C8uĤuC8&5(
N,l

uC̃N,l u2~EN,l 2EN,G!>0,

~11!
1-2
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where the equality holds iffC̃N,l 50 for all l ÞG. Applying
Eq. ~10! to ^C8uĤuC8&, and noting that ^C̃uN̂uC̃&
5^C8uN̂uC8& and ^C̃udN̂2uC̃&5^C8udN̂2uC8&, we obtain

^C̃uĤuC̃&>E^N&,G1
^dN2&

2V
m8S ^N&

V D . ~12!

When uC̃& and uC& have the same values of^N& and^dN2&,
Eqs.~10! and ~12! can be combined as the simple formula

^C̃uĤuC̃&>^CuĤuC&5E^N&,G1
^dN2&

2V
m8S ^N&

V D . ~13!

It is easy to show a similar result forK̂[Ĥ2mN̂, wherem
here is a constant,

^C̃uK̂uC̃&>^CuK̂uC&5K ^N&,G1
^dN2&

2V
e9S ^N&

V D , ~14!

where KN,G[EN,G2mN. Hence, the following results ar
applicable to the expectation values ofK̂ as well, if we re-
placeKN,G andm8 with EN,G ande9, respectively.

Since a PPV should take either form~5! or ~6!, we con-
clude that~i! a PPV always has a higher energy than
SGS, and ~ii ! the excess energy is lower bounded
m8^dN2&/2V. This is the first of the main results of this pa
per. It should be mentioned that Ref.@5# tried to give an
upperbound of the energydifferencebetween the SGS an
‘‘low-lying states,’’ a linear combination of which is a PPV
while our result gives alower bound of the energyincrease
of PPVs over the SGS.

We now estimate how the lower boundm8^dN2&/2V be-
haves with increasingV. For interacting many bosons, w
previously found the state vector of a PPV, which we cal
the coherent state of interacting bosons~CSIB! @6,7,15#. This
state vector, denoted byua,G&, has the form of Eq.~5! with
CN5e2uau2aN/AN!. Hence, ^dN2&5^N&, and Eq. ~10!
yields

^a,GuĤua,G&2E^N&,G5~n/2!m8~n!5O~V0!.0, ~15!

where the sign is determined by postulate 2(m8.0), andn
5^N&/V. On the other hand, if we apply the inequality
Ref. @5# to the CSIB, we obtainu^a,GuĤua,G&2E^N&,Gu
<O(AV), which diverges asV→`. Although there is no
contradiction between the two results, the present re
gives a much more accurate estimate. The CSIB has a hi
energy than the SGS byO(V0), for the same value of̂N&.
Although one might expect that the energy increase would
a decreasing function ofV ~as in the case of the breaking o
the Z2 symmetry@1#!, our result denies such a naive expe
tation.

For general systems that exhibit the breaking of a U~1!
symmetry, we do not know the explicit forms of PPVs. B
virtue of relation~13!, however, it is sufficient to estimat
^dN2& for the estimation of the energy increase. We arg
that
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for general systems that exhibit the breaking of a U~1! sym-
metry, for the following reason. Macroscopic properties
PPVs must be stable against weak perturbations from e
ronments. The environments include those which excha
charges with the system. We may apply the classical stoc
tic theory to estimate the stable distribution of the charg
because~i! the phases ofCN andC̃N,l are irrelevant tô N&
and ^dN2&, and ~ii ! the phase coherence between the en
ronments and the system may be negligible if the depha
times of the environments are short enough. Then, accor
to the classical stochastic theory, the steady-state distribu
of the charges should satisfy Eq.~16! when charges are ran
domly exchanged with a huge environment.

From Eqs.~4!, ~7!, ~13!, and~16!, we obtain

^PPVuĤuPPV&2E^N&,G>O~V0!.0, ~17!

for general systems that exhibit the breaking of a U~1! sym-
metry. Note that this result is consistent with the theory
SBs in infinite systems, according to which PPVs have t
same energydensityas the SGS@16#. In fact, Eq.~17! yields
(^PPVuĤuPPV&2E^N&,G)/V>O(V21)→0 asV→`, for the
lower bound of the difference in the energydensities. On the
other hand, our result denies a naive expectation that
energies of PPVs and the SGS would be ‘‘almost degen
ate’’ in the sense that the energy difference would be a
creasing function ofV. Furthermore, the energy differenc
for a largeV becomesmuch largerthan the excitation ener
gies of low-lying excited states, whose wave numberk
}V21/d in a d-dimensional space, because the excitation
ergy e(k) behaves ase(k)}uku}V21/d for a linear disper-
sion, ande(k)}uku25V22/d for a parabolic dispersion. This
should be contrasted with the breaking of theZ2 symmetry,
for which the energy difference between PPVs and the S
is only O(V21) @1#, which becomesmuch smallerthan the
excitation energies in a three-dimensional space for a la
V. This indicates, for example, that much more care is n
essary for the breaking of the U~1! symmetry than for the
breaking of theZ2 symmetry, when one tries to find a PP
by numerical calculations.

We finally discuss the collapse time of PPVs, by gener
izing the discussion of Ref.@8#. In general, PPVs are not a
energy eigenstate, hence their wave functions deform in
nite systems as time evolves. Lettcoll be thecollapse time,
which is defined as the time scale at which this deformat
becomes significant. For example, for an initial (t50) state
of the form of Eq. ~5!, it evolves as uC&
→(NCNe2 iEN,GtuN,G&[uC;t& where \ is taken as unity.
SinceE^N&1DN,G2E^N&,G5mDN1••• from Eq.~9!, the dif-
ference of uC;t& from uC& becomes significant att5tcoll

;1/mA^dN2&, because the linear termmDN alters the rela-
tive phases amongCN’s, except whenCN’s take some spe-
cial forms. AsV is increased, this time scale approaches z
if A^dN2& increases in proportion toV as Eq.~16!. On the
other hand, PPVs must survive over a macroscopic t
scale, i.e.,tcoll→` as V→` for PPVs. To satisfy this con-
1-3
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dition, CN’s of PPVs must take some special forms. For
teracting many bosons, for example,CN’s of the CSIB in-
deed have special forms, for which the effect of the line
termmDN on ua,G;t& is completely absorbed as a time ev
lution of the single parametera. In fact,

ua,G;t&5e2uau2(
N

aN

AN!
e2 i [E^N&,G1mDN1m8(DN)2/2V] tuN,G&

~18!

5e2 i (E^N&,G2m^N&)te2uau2(
N

~ae2 imt!N

AN!

3e2 i [m8(DN)2/2V] tuN,G&. ~19!

Since the prefactore2 i (E^N&,G2m^N&)t has no physical mean
ing, we find thatua,G;t&5uae2 imt,G& if m850. Namely,
the CSIB does not collapse at all ifm850, only the phase of
a evolves with time asae2 imt. This result form850 is well
known. If m8.0, on the other hand, the wave functio
ua,G& collapses att;V/m8(DN)2;V/m8^dN2&5O(V0).
However, this doesnot necessarily mean that the expectati
values of observables of interest alter in this time scale.
example, if an observable is proportional to the boson op
tor ĉ or its derivative, it detects the phase relation betwe
adjacent coefficients,CN11 and CN . The ratio of their
phases evolves, forN5^N&1DN, as

~e2 imt!N11e2 im8(DN11)2t/2V

~e2 imt!Ne2 im8(DN)2t/2V
5e2 imte2 im8t/2Ve2 im8DNt/V.

~20!
tte

er

tt
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In the right-hand side, the first factore2 imt can be absorbed
as the time evolution of the single parametera→ae2 imt,

whereas the second factore2 im8t/2V is negligible because

m8/2V5O(1/V). Hence, only the last factore2 im8DNt/V is
relevant to the collapse time. We thus find

tcoll;V/~m8DN!;V/~m8A^dN2&!5O~AV!. ~21!

For general observables that are polynomials of degreeM of

ĉ, ĉ† and their derivatives, we obtain

tcoll5O~AV/M !. ~22!

Hence, if the degreeM of the polynomial is fixed indepen
dent ofV, we again obtaintcoll5O(AV). Since the expecta
tion values of observables are relevant in quantum the
we may conclude that the collapse time of the CSIB
O(AV), which is macroscopic in the sense that it diverges
V→`, although the collapse time of its wave function
O(V0) @17#. If, on the other hand,M is increased in propor-
tion to AV, then tcoll5O(V0). Except for such an abnorma
case~asM}AV), tcoll is macroscopic. For more general sy
tems with the breaking of U~1! symmetry, we have not ye
obtained definite conclusions ontcoll , although we expect a
situation similar to the case of interacting many bosons. T
may be a subject of future studies.
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