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Energies and collapse times of symmetric and symmetry-breaking states of finite systems
with a U(1) symmetry

Akira Shimizu* and Takayuki Miyadera
Department of Basic Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
(Received 16 April 2001; published 24 October 2D01

We study quantum systems of volurdewhich will exhibit the breaking of a (1) symmetry in the limit of
V—oo, whenV is large but finite. We estimate the energy difference between the “symmetric ground state”
(SG9, which is the lowest-energy state that does not break the symmetry, and a “pure phase vée@wn”
which approaches a symmetry-breaking vacuurk’-as~. Under some natural postulates on the energy of the
SGS, it is shown that PPVs always have a higher energy than the SGS, and we derive a lower bound of the
excess energy. We argue that the lower boun®(¥°), which becomesnuch largerthan the excitation
energies of low-lying excited states for a largeWe also discuss the collapse time of PPVs for interacting
many bosons. It is shown that the wave function collapses in a microscopic time scale, because PPVs are not
energy eigenstates. We show, however, that for PPVs the expectation value of any observable, which is a finite
polynomial of boson operators and their derivatives, does not collapse for a macroscopic time scale. In this
sense, the collapse time of PPVs is macroscopically long.
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The symmetry breakin{SB) is a key to understand quan- occur, the energy difference between PPVs and the SGS
tum systems of many degrees of freedom. Although SB i§hould_be small enough. AIthough the magnitude of this en-
formally defined for infinite systems, the physics of SBs in€rgy difference has been attracting much attenfiba7],
finite systems have been attracting much attenfion8] for definite conclusions have not yet been reached for the break-

the following reasons. ing of a U1) symmetry. For example, an exact calculation
(i) Progress of experimental techniques enables one | %i\é)e] only a rough estimafeee the discussion following
g. .

observe and examine phase transitions in small systems, suc In this paper, we estimate much more strictly the energy

as small magnets, small superconduct®fs liquid Helium  yitterence between PPVs and the SGS for the breaking of a
in a small bubblg10], and laser-trapped atori$1], hence (1) symmetry. Under some natural postulates on the energy
SBs in finite systems should be studied seriously. of the SGS, we show that PPVs always have a higher energy

(ii) Although recent progress of computers enables one tehan the SGS, and that the excess energy is lower bounded
obtain ground states of finite systems numerically, the relaby u'( SN?)/2V, whereu' is the derivative of the chemical
tion between such ground states and SB ground states pbtential with respect to the density=(N)/V, and(SN?)
infinite systems are nontrivial. denotes the fluctuation of ‘charghl. We further argue that

In a mean-field approximation, ground states of a finitethis lower bound i©O(V°), which becomesnuch largerthan
system of volumé/ are degeneratéf it will exhibit a SB as  the excitation energies of low-lying excited states for a large
V— ), and each ground state approaches a SB vacuum & This should be contrasted with the breaking of e

the infinite system a¥—o0. We call such a state that has a symmetry, for which the energy difference between PPVs

. _1 .
finite expectation value of an order parameter and apgnd the SGS is onhO(V ) [1], which becomesmuch

. . ... smaller than the excitation energies in a three-dimensional
proachegi.e., well approximatesa SB vacuum of the infi- g

: " space for a larg&. We also study the collapse tintg) of
nite system a¥—o a “pure phase vacuum{(PPV). On the PPVs for the case of interacting many bosons. It is shown

other hand, if one diagonalizes the Hamiltonian of the finitey, . teon=0O(V0) for the wave function, because PPVs are
system exactly, the energy spectrum is much different from, . energy eigenstates. We show, however, that for PPVs

that of a mean-field approximation. The ground states are nQt  _ .
necessarily degenerate. Moreover, it often occurs that a syr(ri\)j"" O(\V) for the expectation value of any observable,

metric state that does not break the svmmetry is a aroun hich is a finite polynomial of boson operators and their
state. whereas PPVs have hiaher ener%;les?] i)rll the agb- erivatives, if the degree of the polynomial is fixed indepen-
' ' e hig ) dent ofV. In this sense, the collapse time of PPVs is macro-
sence of a SB field, which is usually considered as an unécopically long
physical, artificial field for the brea‘lflng of a(@ symmetry. . We consider a quantum system that has(#) dymmetry,
We call such a ground state the “symmetric ground state A ) . .
(SGS. In contrast to PPVs, the SGS does not approach a Sihose conserved chardé has integral eigenvalueén an
vacuum of the infinite system a&—o. Hence, for a SB to aPpropriate unjt We assume that the system is uniform,
with the periodic boundary conditions, in order to eliminate

additional complexities caused by nonuniform potentials or
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H|N1/>_EN,/|N’/>’ (1) |C>ENE/ CN/|N,/>, (6)
NIN,/)=NIN,/), 2 B
whereCy andCy , are coefficients, which are normalized as
where/ is a(set of quantum numbés). For each value of SylChl?=1 andEN,/|EZN,/|2=1, respectively. We are in-
N, there exists the lowest-energy stét&G), which we as-  terested in the case where the charge densfty (N)/V)
sume is nondegenerate. In geneMlbecomes the generator approaches a finite value &—. (On the other hand, the
of the U1) symmetry. HencelN,G) is the SGS. We now casen—0 is rather trivial, while the case— = is anoma-
make two basic postulates: postulate 1 is the extensivity ofous) Namely,
the lowest eigenenergy,
(N)=0(V), ()
Enc=Ve(N/V), (3 A o
where(N)=(C|N|C) or (C|N|C), andn=(N)/V. Further-
where € is a single-variable function of the charge densitymore, PPVs should be consistent with thermodynamics, ac-
N/V. This postulate seems natural under our assumptionsording to which variances of extensive variables are of
that the system is uniform andN,G) is nondegenerate, as O(V) or smaller. Hence,
long as the charge does not induce a long-range force.
(Hence, care must be taken when the present results are ap- (N%)=0(V), (8
plied to systems for whiclN is the electric chargeBy tak- . o A
ing the limitV—c, we can define(n) for every continuous Where (SN?=(C|sN?|C) or (C|5N?|C), where SN=N

value ofn(=N/V). Using thise(n) for a finiteV as well, we ~ —(N). Namely,Cy, and(~:N,/ should localize in thé\ space
can regarcdN in Eq. (3) as a continuous variable. Hence, we in such a way that Eq$7) and(8) are satisfied. Note that the
can defineu(n)=¢'(n) = (d/dN)Ey ¢ . Postulate 2 is phases ofCy andCy , are irrelevant taN), (6N?), and to
) the energy expectation valug&|H|C) = |Cy|?Ey ¢ and
,LL’(H)EE"(n)ZVa—EN >0, 4) (CIH|C)=3y |Cy|Ey,, -
INZ For N=(N)+AN, where AN)?<0(V), Eq. (3) can be

expanded as
which also seems natural because thermodynamics requires
N AN N

that u should be a nondecreasing functionmffor the sys-

tem to be stable. Although’ =0 for noninteracting particles Enc=V v v V;
(such as a photon gas whogeis always zerfy we assume
um'>0 because we are not interested in such a trivial case.
For weakly interacting many bosons with a repulsive inter- +0
action (with the effective coupling constam>0), for ex-

ample, these postulates are indeed satisfidg g _ I
=Ve(N/V), where e(n)=gn?/2+ - - -, henceu'=g+ - - - We neglect the higher-order terO(1/N/*?), in the follow-

~0. ing analysis. Then, we can easily show that
When the system exhibits the breaking of thél)Jsym- (5N?) ((N)

SEE

- (C)

1
2

V3/ 2

metry in the limit ofV—co (while keeping the charge density (C| F||C>= Eny.ct ~ L

At A, . (10)
finite), a SB state cannot be ljm _[N,G) or lim,,__|N,/), 2V v

because they are eigenstates f[1—7]. Therefore, one Since the last term is positive because of postulate 2, we
should take superpositions of states with different charges inonclude thatC) always has a higher energy thaN,G) if
order to construct a PPV, which approaclies., well ap-  they have the same value(®). Here, it is crucial to fix the
proximate$ a SB vacuum a¥—« [1-7]. If the quantum value of (N) for the comparison[Otherwise, either state
system(of a finite V) is perfectly closed, such superpositions could have a higher energy because of the linear term in Eq.
are forbidden for massive and/or charged particles by th€9).] Note that formula10), although very simple, gives the
charge superselection rule, which requires that any pure staemergy of a general state of the fo(f) very precisely, with
must be an eigenstate &f [12]. However, if the quantum the error being onlyO(1NV/"%). Note also that the energy
system is a subsystem of a larger sysfasl, we previously ~€xpectation value is determined only Ki) and (5N?) if
showed that one can associate a pure state, which is a cohée functional forms oEy ¢ and .’ (n) are given.

ent superposition of states with different charges, to the sub- For a more general staté), we derive an inequality. Let
system[6,14]. We investigate energy expectation values ofCy’'s be some coefficients that satisfﬂ:,’\l|2=2/|(~3N,/|2.
such states, which in general have either of the followingrFor |C")==\C{IN,G),

forms;

<6|F||6>—<C'|H|C'>=NE/ |Cn.|%En,—Ene)=0,

[C)=2, CAIN.G), (5) (11)
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where the equality holds ifty ,=0 for all /#G. Applying (SN?)~(N) (16)
Eg. (10) to (C’|H|C’), and noting that (C|N|C) N _
=<C’|N|C’) and<6|5l§|2|(~:>=(c’|5N2|C’>, we obtain for general systems '_that exhibit the breaklng_ of(a)Usyr_n-
metry, for the following reason. Macroscopic properties of
o (5N2> (N) PPVs must be stable against weak perturbations from envi-
<C|H|C>>E<N>’G+Wﬂ’ 7) (120  ronments. The environments include those which exchange

charges with the system. We may apply the classical stochas-
tic theory to estimate the stable distribution of the charges
becausdi) the phases o€y andCy , are irrelevant tqN)
and(S8N?), and (i) the phase coherence between the envi-

When|C) and|C) have the same values Of) and(5N?),
Egs.(10) and(12) can be combined as the simple formula,

(5N?) (N) ronments and the system may be negligible if the dephasing
<C| I:||EZ>>(C| I:||C)= Eqnyet oo~/ <_) (13 times of the environments are short enough. Then, according
’ 2V v to the classical stochastic theory, the steady-state distribution

' o . R of the charges should satisfy E{.6) when charges are ran-
Itis easy to show a similar result fé¢=H—uN, wherex domly exchanged with a huge environment.
here is a constant, From Egs.(4), (7), (13), and(16), we obtain

i N SN2 N ~
@IRR)=(CIkIC) =K o+ e ], a0 (PPVRIPPY—Ey,c=0(V)>0, (17
B , for general systems that exhibit the breaking of @)sym-
where Ky c=En,c—uN. Hence, the following results are metry. Note that this result is consistent with the theory of
applicable to the expectation valueskfas well, if we re-  SBs ininfinite systems, according to which PPVs have the
placeKy g andu’ with Ey g ande€”, respectively. same energylensityas the SG$16]. In fact, Eq.(17) yields
Since a PPV should take either fo_l(l’ﬁ) or (6), we con- ((PP\AI:HPPV)—EN &)/V=0(V"1)—0 asV—, for the
clude that(i) a PPV always has a higher energy than thejgyer hound of the difference in the enerdgnsities On the
SGS, and(ii) the excess energy is lower bounded bygther hand, our result denies a naive expectation that the
w'(N%)/2V. This is the first of the main results of this pa- energies of PPVs and the SGS would be “almost degener-
per. It should be mentioned that R¢5] tried to give an  ate~ in the sense that the energy difference would be a de-
upperbound of the energglifferencebetween the SGS and ¢reasing function ofv. Furthermore, the energy difference
low-lying states,” a linear combination of which is a PPV, for g JargeV becomesnuch largerthan the excitation ener-
while our result gives éower bound of the energincrease gies of low-lying excited states, whose wave numiter
of PPVs over the SGS. ) «V~ ™ in a d-dimensional space, because the excitation en-
We now estimate how the lower poumd(ﬁN Y2V be- ergy (k) behaves ag(k)x|k|«V~Y for a linear disper-
haves with increasiny. For interacting many bosons, we ¢jq, ande(k)|k|2=V~24 for a parabolic dispersion. This
previously found the ;tate veptor of a PPV, which we ?a"edshould be contrasted with the breaking of thesymmetry,
the coherent state of interacting bos¢@SIB) [6,7,19. This ¢4 \hich the energy difference between PPVs and the SGS
state vectg)r, denoted By, G), has the form of Eq(5) with g only O(V—1) [1], which becomesnuch smalletthan the
Cny=e 1“"aM/\NI. Hence, (N?)=(N), and Eq. (10) excitation energies in a three-dimensional space for a large

yields V. This indicates, for example, that much more care is nec-
R essary for the breaking of the(l) symmetry than for the
(a,G|H|a,G)—E 6= (n/2)u'(n)=0(V°)>0, (15  breaking of thez, symmetry, when one tries to find a PPV
by numerical calculations.
where the sign is determined by postulateu2$0), andn We finally discuss the collapse time of PPVs, by general-

=(N)/V. On the other hand, if we apply the inequality of izing the discussion of Ref8]. In general, PPVs are not an
Ref. [5] to the CSIB, we Obtaid<a,G||:||a,G>—E<N>’G| energy eigenstate, hence their wave functions deform in fi-
<0O(\V), which diverges as/—c. Although there is no Nite systems as time evolves. Ligt, be thecollapse time
contradiction between the two resu]tS, the present resuWhiCh is defined as the time scale at which this deformation
gives a much more accurate estimate. The CSIB has a highBecomes significant. For example, for an initig-=0) state
energy than the SGS b9(V?), for the same value ofN). ~ of the form of Eq. (5), it evolves as |C)
Although one might expect that the energy increase would be> =nCne™'EN&N,G)=|C;t) wheref: is taken as unity.
a decreasing function of (as in the case of the breaking of SINCEE(n+an,c—E(ny,c=#AN+--- from Eq.(9), the dif-
the Z, symmetry[1]), our result denies such a naive expec-ference of|C;t) from |C) becomes significant at=tc
tation. ~1/u(8N?), because the linear termAN alters the rela-
For general systems that exhibit the breaking of @)U tive phases amon@y’'s, except wherCy’s take some spe-
symmetry, we do not know the explicit forms of PPVs. By cial forms. AsV is increased, this time scale approaches zero
virtue of relation(13), however, it is sufficient to estimate if \/<6N2> increases in proportion t¥ as Eq.(16). On the
(8N?) for the estimation of the energy increase. We arguedther hand, PPVs must survive over a macroscopic time
that scale, i.e.te— asV—o for PPVs. To satisfy this con-
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dition, Cy's of PPVs must take some special forms. For in-In the right-hand side, the first facter 't can be absorbed
teracting many bosons, for exampley’s of the CSIB in- as the time evolution of the single parameters ae™ ',
deed have special forms, for which the effect of the lineakynereas the second facter '*'2V is negligible because

termuAN on|a,G;t) is completely absorbed as a time evo- iy .
Iutionluof the s|ingle 3arametgr In%act p'12V=0(1N). Hence, only the last factae™"* 21 is
' ' relevant to the collapse time. We thus find

N
|a,G;t>=e’|“|22 \7_|efi[E<N>VG+,uAN+;L’(AN)2/2V]’(|N,G>
N VN toor~V/(1' AN)~V/ (' {SNZ) =O(\V).  (21)

(18)
) ) (ae_th)N
=g 1By~ #N)tg—|al 2 —\/_I For general observables that are polynomials of delyted
N N! fﬂ fp* and their derivatives, we obtain
Xe—i[u’(AN)2/2V]t|N,G>_ (19)
Since the prefactoe™ ().~ #NDt has no physical mean- teo= O(VVIM). (22)

ing, we find that|,G;t)=|ae™'*,G) if u'=0. Namely,

the CSIB does not collapse at allif =0, only the phase of

« evolves with time asve™'#!. This result foru’=0 is well  Hence, if the degred of the polynomial is fixed indepen-
known. If ,LL/>O, on the other hand, the wave function dent ofV, we again Obtaiﬂ(:o":O(\/V). Since the expecta-
|a,G) collapses att~V/u'(AN)?~V/u'(N?)=0(V%.  tion values of observables are relevant in quantum theory,
However, this doesot necessarily mean that the expectationyye may conclude that the collapse time of the CSIB is

values of observables of interest alter in this time scale. Fob(\/v) which is macroscopic in the sense that it diverges as
example, if an observable is proportional to the boson opere\—/_)oc, although the collapse time of its wave function is

tor ¢ or its derivative, it detects the phase relation betweerp (/%) [17]. If, on the other hand\! is increased in propor-
adjacent coefficientsCy,; and Cy. The ratio of their ion 1o /v, thent.,;= O(V°). Except for such an abnormal
phases evolves, fdi=(N)+AN, as case(asM V), tsy is macroscopic. For more general sys-

(e~ i#)N+ Tg-in! (3N+ 1272V tems with the breaking of (1) symmetry, we have not yet
’ : . — e iutgmintI2Vg—in ANUV. obtained definite conclusions dg,,, although we expect a
(e”1#Ng=in (AN)T2V situation similar to the case of interacting many bosons. This

(20 may be a subject of future studies.
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